Abstract
High concentrations of extracellular ATP (eATP) resulting from cell damage may be found during an ischemia/reperfusion (I/R) episode at the site of injury. eATP activates purinergic receptors in dendritic cells (DCs) and may inhibit inflammation. This immunosuppressive activity could be of interest in the field of I/R, which is an inflammatory condition involved in myocardial infarction, stroke, and solid organ transplantation. However, the specific purinergic receptor responsible for this effect remains to be identified. In this study, we report that eATP induced maturation of human monocyte-derived DCs. Additionally, eATP inhibited IL-12 production whereas IL-10 levels remained unchanged in activated DCs. These effects were prevented by the P2Y11R antagonist NF340. Interestingly, a 5-h hypoxia prevented the effects of eATP on cytokine production whereas a 1-h hypoxia did not affect the eATP-mediated decrease of IL-12 and IL-6. We showed a time-dependent downregulation of P2Y11R at both mRNA and protein levels that was prevented by knocking down hypoxia-inducible factor-1α. In this study, we showed an immunosuppressive role of P2Y11R in human DCs. Additionally, we demonstrated that the time-dependent downregulation of P2Y11R by hypoxia orientates DCs toward a proinflammatory phenotype that may be involved in post-I/R injuries as observed after organ transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.