Abstract

The retina is one of the tissues with the highest metabolic activity in the body, and the energy-demanding photoreceptors require appropriate oxygen levels for photo- and neurotransduction. Accumulating evidence suggests that age-related changes in the retina may reduce oxygen supply to the photoreceptors and trigger a chronic hypoxic response. A detailed understanding of the molecular response to hypoxia is crucial, as hindered oxygen delivery may contribute to the development and progression of retinal pathologies such as age-related macular degeneration (AMD). Important factors in the cellular response to hypoxia are microRNAs (miRNAs), which are small, noncoding RNAs that posttranscriptionally regulate gene expression by binding to mRNA transcripts. Here, we discuss the potential role of hypoxia-regulated miRNAs in connection to retinal pathologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.