Abstract

The development of coronary vessels in embryonic mouse heart involves various progenitor populations, including sinus venosus (SV), endocardium, and proepicardium. ELA/APJ signaling is known to regulate coronary growth from the SV, whereas VEGF-A/VEGF-R2 signaling controls growth from the endocardium. Previous studies suggest hypoxia might regulate coronary growth, but its specific downstream pathways are unclear. In this study, we further investigated the role of hypoxia and have identified SOX17- and VEGF-R2-mediated signaling as the potential downstream pathways in its regulation of developmental coronary angiogenesis. HIF-1α stabilization by knocking out von Hippel Lindau (VHL) protein in the myocardium (cKO) disrupted normal coronary angiogenesis in embryonic mouse hearts, resembling patterns of accelerated coronary growth. VEGF-R2 expression was increased in coronary endothelial cells under hypoxia in vitro and in VHL cKO hearts in vivo. Similarly, SOX17 expression was increased in the VHL cKO hearts, while its knockout in the endocardium disrupted normal coronary growth. These findings provide further evidence that hypoxia regulates developmental coronary growth potentially through VEGF-R2 and SOX17 pathways, shedding light on mechanisms of coronary vessel development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.