Abstract
During postnatal heart valve development, glycosaminoglycan (GAG)-rich valve primordia transform into stratified valve leaflets composed of GAGs, fibrillar collagen, and elastin layers accompanied by decreased cell proliferation as well as thinning and elongation. The neonatal period is characterized by the transition from a uterine environment to atmospheric O2, but the role of changing O2 levels in valve extracellular matrix (ECM) composition or morphogenesis is not well characterized. Here, we show that tissue hypoxia decreases in mouse aortic valves in the days after birth, concomitant with ECM remodeling and cell cycle arrest of valve interstitial cells. The effects of hypoxia on late embryonic valve ECM composition, Sox9 expression, and cell proliferation were examined in chicken embryo aortic valve organ cultures. Maintenance of late embryonic chicken aortic valve organ cultures in a hypoxic environment promotes GAG expression, Sox9 nuclear localization, and indicators of hyaluronan remodeling but does not affect fibrillar collagen content or cell proliferation. Chronic hypoxia also promotes GAG accumulation in murine adult heart valves in vivo. Together, these results support a role for hypoxia in maintaining a primitive GAG-rich matrix in developing heart valves before birth and also in the induction of hyaluronan remodeling in adults.NEW & NOTEWORTHY Tissue hypoxia decreases in mouse aortic valves after birth, and exposure to hypoxia promotes glycosaminoglycan accumulation in cultured chicken embryo valves and adult murine heart valves. Thus, hypoxia maintains a primitive extracellular matrix during heart valve development and promotes extracellular matrix remodeling in adult mice, as occurs in myxomatous disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.