Abstract

Hypoxia is the bottleneck that affects the response of conventional photon radiotherapy, but it does not seem to have much effect on carbon ion radiotherapy (CIRT). This study aimed to evaluate the changes of hypoxia before and after CIRT in patients with non-small cell lung cancer (NSCLC) and whether 18F-fluoromisonidazole (18F-FMISO) positron emission tomography/computed tomography (PET/CT) imaging could predict the response to CIRT in NSCLC patients. A total of 29 patients with NSCLC who received CIRT were retrospectively included. 18F-FMISO PET/CT imaging was performed before and after treatment, and chest CT was performed after radiotherapy. Radiation response within 1 week after radiotherapy and at the initial follow-up were defined as the immediate response (IR) and early response (ER), respectively. The tumor-to-muscle ratio (TMR), hypoxia volume (HV), and the ΔTMR and ΔHV values of 18F-FMISO uptake were collected. Fisher's exact test, Mann-Whitney U test, Wilcoxon signed-rank test, and binary logistic regression were used to analyze data. (I) Baseline TMR could predict the IR to CIRT with a baseline TMR cut-off value of 2.35, an area under the curve (AUC) of 0.85 [95% confidence interval (CI): 0.62-1.00], a sensitivity of 80.0%, a specificity of 87.5%, and an accuracy of 85.7%. Taking the baseline TMR =2.35 as the cut-off value of high-hypoxia and low-hypoxia group, the IR rate of the high-hypoxia group [66.7% (4/6)] and the low-hypoxia group [6.7% (1/15)] was statistically different (P=0.01). (II) ΔTMR could predict early treatment response after CIRT at initial follow-up, with a cut-off value of ΔTMR =36.6%, AUC of 0.80 (95% CI: 0.61-1.00), sensitivity of 72.7%, specificity of 90.0% and accuracy of 71.4%. A higher degree of tumor hypoxia may be associated with a better IR to CIRT. ΔTMR could predict early treatment response after CIRT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call