Abstract

Hypoxia, a consequence of interstitial lung diseases, may lead to secondary pulmonary hypertension and pulmonary vascular remodeling. Hypoxia induces activation and proliferation of lung cells and enhances the deposition of extracellular matrix including glycosaminoglycans (GAGs). To elucidate the cell biological mechanisms underlying the development of secondary pulmonary hypertension, we studied the effect of hypoxia on GAG synthesis by human lung cells. GAG synthesis was measured by incorporation of [(3)H]glucosamine; GAGs were isolated, purified, and characterized with GAG-degrading enzymes. Fibroblasts and vascular smooth muscle cells (VSMCs) synthesized hyaluronic acid, heparan sulfate, and chondroitin sulfates, whereas dermatan sulfate was found only in fibroblasts. Hypoxia did not influence the size or charge of the individual GAGs. However, hypoxia inhibited platelet-derived growth factor-induced [(3)H]glucosamine incorporation in secreted GAGs, especially hyaluronic acid, in VSMCs. In contrast, it stimulated GAG secretion, specifically heparan sulfate, by fibroblasts. Our results indicate that hypoxia induces modifications in GAG synthesis by human lung VSMCs and fibroblasts that may be correlated to pathophysiological manifestations in lung diseases causing hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call