Abstract

Hypoxia-ischemia induces apoptotic and necrotic cell death, which results partially from persistent alterations in cellular energy homeostasis. Insulin-like growth factor I (IGF-I) is an anabolic pleiotrophic factor required by developing neurons for their optimal proliferation, differentiation, and survival. To determine how cell death and changes in IGF-I gene expression relate to the extent of hypoxia-ischemia, we evaluated the time course of apoptosis in a neonatal hypoxia-ischemia model in relation to the cellular distribution of IGF-I and IGFBP5 mRNA. Severe hypoxia-ischemia results in an immediate decrease in neuronal IGF-I and IGFBP5 mRNA. The decrease in neuronal IGF-I mRNA was concurrent with an increase in the number of apoptotic cells. It is conceivable that the immediate decrease in IGF-I gene expression may contribute to the impending neuronal death and selective vulnerability of myelinogenesis during the perinatal period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.