Abstract

Protein tyrosine phosphatases play a critical role in controlling tyrosine phosphorylation levels of proteins. Ischemia induces changes in tyrosine phosphorylation. As part of our investigations of the mechanisms responsible for these changes, we studied the effects of cerebral hypoxia-ischemia in 7-day-old (P7) and P21 rat brains on expression of the STEP (striatal enriched phosphatase) family of protein tyrosine phosphatases. P7 and P21 rats were subjected to unilateral hypoxia-ischemia, and brains were analyzed at various intervals of recovery for the presence of STEP. Hypoxia-ischemia induced the formation of a low Mr isoform of STEP, STEP33, in the ipsilateral (damaged) hemisphere but not in the contralateral (undamaged) side. STEP33 produced as a result of ischemia was located exclusively in the cell soluble fraction. In P21 rats, the ischemia-induced elevation in STEP33 was delayed relative to P7 rats. STEP33 was produced by digestion of postsynaptic densities with calpain I and by exposure of NT2/D1 cells expressing STEP to the calcium ionophore A23187. The results suggest that ischemia-induced calcium influx results in the calcium-dependent proteolysis of membrane-associated STEP61 and the concomitant release of STEP33 into the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.