Abstract

The expression of thymic stromal lymphopoietin (TSLP), a cytokine which greatly contributes to the induction of type I allergy, is upregulated in chronic inflammation such as atopic dermatitis and psoriasis. As hypoxia in the epidermis is important for maintaining skin homeostasis, we examined the regulation of TSLP expression by hypoxic conditions in normal skin epithelial tissues. TNF-α-induced expression of TSLP in human keratinocyte HaCaT and in mouse keratinocyte PAM212 cell lines were inhibited under hypoxic condition (1% O2), although the mRNA expressions of TNF-α, IL-6, IL-8, MCP-1, and VEGF-A were not inhibited. Hypoxia-mimicking conditions, which include NiCl2, CoCl2, and DMOG, an inhibitor of 2-oxoglutarate-dependent enzymes, also selectively inhibited TNF-α-induced TSLP expression. These results suggested that inactivation of prolyl hydroxylase by hypoxia and hypoxia-mimicking conditions is involved in the repression of TNF-α-induced TSLP expression. Interestingly, the inhibition of TSLP production by hypoxic treatment was significantly reversed by treatment with the HIF-2α antagonist but not with the HIF-1α inhibitor. DMOG-induced inhibition of TSLP promoter activity was dependent on the -71 to +185 bp promoter region, suggesting that the binding of HIF-2 to hypoxia response element (HRE) in this region repressed the TSLP expression. These results indicated that hypoxia and hypoxia-mimicking conditions inhibited TSLP expression via HIF-2 and HRE-dependent mechanisms. Therefore, PHD and HIF-2α could be a new strategy for treatment of atopic dermatitis and psoriasis.

Highlights

  • Thymic stromal lymphopoietin (TSLP) is considered a master switch for allergic inflammation [1]

  • In this research, using human keratinocyte HaCaT and mouse keratinocyte PAM212 cell lines, we examined whether TSLP expression was regulated by hypoxia and identified the molecular mechanisms involved in the process by using proline hydroxylase (PHD) inhibitors [16]

  • VEGF-A, TNF-α, IL-6, Monocyte Chemotactic Protein-1 (MCP-1), and IL-8 mRNA levels were maintained, or rather increased, by the hypoxic treatment (Fig 1C and 1E–1H), suggesting that TSLP expression was selectively inhibited by the hypoxia condition

Read more

Summary

Introduction

Thymic stromal lymphopoietin (TSLP) is considered a master switch for allergic inflammation [1]. TSLP is mainly produced by epithelial cells, and promotes Th2-type immune responses by activating on dendritic cells [2]. Activated dendritic cells express OX40L and promote differentiation of naive CD4 positive T cells into inflammatory Th2 cells, which aggravates allergies by releasing cytokines, such as IL-4, IL-5 and IL-13 [3]. TSLP production is induced by inflammatory cytokines, such as TNF-α [4], the activation of protease-activating receptors, toll-like receptors, and even by chemical compounds [5].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call