Abstract

Hypoxia/oxygen-sensing signally is closely associated with many tumor progressions, including osteosarcoma (OS). Previous research principally focused on the function of hypoxia-inducible factor (HIF)-1α and HIF-2α as the major hypoxia-associated transcription factors in OS, however, the role of HIF-3α has not been investigated. Our study found that HIF-3α was upregulated in OS tissues and cell lines. HIF-3α overexpression facilitated cell proliferation and invasion, and inhibited apoptosis, whereas HIF-3α knockdown showed the opposite results. Chromatin immunoprecipitation analysis revealed that lysine demethylase 3A (KDM3A) expression was transcriptionally activated by HIF-3α under hypoxia, and KDM3A occupied the SRY-box transcription factor 9 (SOX9) gene promoter region through H3 lysine 9 dimethylation (H3K9me2). Additionally, rescue results revealed that KDM3A or SOX9 overexpression reversed the effects of HIF-3α silence on cell functions. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway inhibitor cucurbitacin I suppressed the promotive effects of HIF-3α overexpression on cell proliferation, invasion and TAK2/STAT3 pathway. Finally, OS cell line MG-63 transfected with HIF-3α short hairpin RNA (HIF-3α shRNA) were subcutaneously injected into nude mice, and the results found that HIF-3α knockdown significantly inhibited the xenograft tumor growth of OS in vivo. In conclusion, this study reveals that HIF-3α promotes OS progression in vitro and in vivo by activating KDM3A-mediated SOX9 promoter demethylation, which may provide a potential therapeutic mechanism for OS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.