Abstract

Recent advances in radiotherapy technology now enable us to deliver a booster dose of radiation to small target fractions in a malignant tumor. To fully exploit this technology in cancer therapy, it is necessary to clarify the location and dynamics of radioresistant cells in heterogeneous tumor microenvironments. Tumor cells in which the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) is extremely high are recognized as potential targets, because HIF-1 has been strongly associated with tumor angiogenesis, invasion, metastasis, and poor prognosis after radiation therapy. In this review, we focus on recent advances in our understanding of [1] the molecular mechanism underlying the regulation of HIF-1s transcriptional activity, [2] the influence of radiation-induced alterations of the tumor microenvironment on intratumor HIF-1 activity, [3] HIF-1-mediated tumor radioresistance, and [4] an optimal treatment protocol for the combination of a HIF-1 inhibitor and radiation therapy. Keywords: Radiation Therapy, tumor hypoxia, tumor microenvironment, hypoxia-inducible factor 1 (HIF-1), reoxygenation, radioresistance, ROS, reactive oxygen species

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.