Abstract

Diarrhea is widespread in intestinal diseases involving ischemia and/or hypoxia. Since hypoxia alters stimulated Cl(-) and water flux, we investigated the influence of such a physiologically and pathophysiologically important signal on expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Located on the apical membrane, this cAMP-activated Cl(-) channel determines salt and fluid transport across mucosal surfaces. Our studies revealed depression of CFTR mRNA, protein, and function in hypoxic epithelia. Chromatin immunoprecipitation identified a previously unappreciated binding site for the hypoxia inducible factor-1 (HIF-1), and promoter studies established its relevance by loss of repression following point mutation. Consequently, HIF-1 overexpressing cells exhibited significantly reduced transport capacity in colorimetric Cl(-) efflux studies, altered short circuit measurements, and changes in transepithelial fluid movement. Whole-body hypoxia in wild-type mice resulted in significantly reduced small intestinal fluid and HCO(3)(-) secretory responses to forskolin. Experiments performed in Cftr(-/-) and Nkcc1(-/-) mice underlined the role of altered CFTR expression for these functional changes, and work in conditional Hif1a mutant mice verified HIF-1-dependent CFTR regulation in vivo. In summary, our study clarifies CFTR regulation and introduces the concept of a HIF-1-orchestrated response designed to regulate ion and fluid movement across hypoxic intestinal epithelia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.