Abstract

Protein-based therapeutic agents currently used for targeted tumor therapy exhibit limited penetrability, nonspecific toxicity, and a short circulation half-life. Although targeting cell surface receptors improves cancer selectivity, the receptors are also slightly expressed in normal cells; consequently, the nonspecific toxicity of recombinant protein-based therapeutic agents has not been eliminated. In this study, an allosteric-regulated protein switch was designed that achieved cytoplasmic reorganization of engineered immunotoxins in tumor cells via interactions between allosteric self-splicing elements and cancer markers. It can target the accumulated HIF-1α in hypoxic cancer cells and undergo allosteric activation, and the splicing products were present in hypoxic cancer cells but were absent in normoxic cells, selectively killing tumor cells and reducing nonspecific toxicity to normal cells. The engineered pro-protein provides a platform for targeted therapy of tumors while offering a novel universal strategy for combining the activation of therapeutic functions with specific cancer markers. The allosteric self-splicing element is a powerful tool that significantly reduces the nonspecific cytotoxicity of therapeutic proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.