Abstract

We show that crucian carp (Carassius carassius) living in normoxic (aerated) water have gills that lack protruding lamellae, the primary site of O(2) uptake in fish. Such an unusual trait leads to a very small respiratory surface area. Histological examination showed that the lamellae (secondary lamellae) of these fish were embedded in a cell mass (denoted embedded lamellae). When the fish were kept in hypoxic water, a large reduction in this cell mass occurred, making the lamellae protrude and increasing the respiratory surface area by approximately 7.5-fold. This morphological change was found to be reversible and was caused by increased apoptosis combined with reduced cell proliferation. Carp with protruding lamellae had a higher capacity for oxygen uptake at low oxygen levels than fish with embedded lamellae, but water and ion fluxes appeared to be increased, which indicates increased osmoregulatory costs. This is, to our knowledge, the first demonstration of an adaptive and reversible gross morphological change in the respiratory organ of an adult vertebrate in response to changes in the availability of oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call