Abstract

BackgroundThe lncRNA PVT1 reportedly functions as a competing endogenous RNA (ceRNA) of miR-186 and miR-26b in different tissue types. In this study, we investigated the possible involvement of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways in the pathogenesis of hypoxia-induced PAH. MethodsExpression of PVT1, miR-186, miR-26b, and Srf and Ctgf mRNAs were evaluated by real-time polymerase chain reaction. Protein expression of SRF, CTGF, LC3B-I, LC3B-II, and Beclin-I was evaluated using western blotting. The regulatory relationship between the lncRNA, miRNAs, and target mRNAs was explored using luciferase assays. Immunohistochemistry was used to evaluate the expression of SRF and CTGF in situ. MTT assay was performed to assess the proliferation of PASMCs. ResultsExposure to hypoxia markedly altered the expression of PVT1, Srf, Ctgf, miR-186, and miR-26b in a rat model. MiR-186 binding sites in the sequences of Srf mRNA and PVT1 were confirmed by luciferase assays, indicating that miR-186 may interact with both PVT1 and Srf mRNA. Additionally, miR-26b binding sites were identified in the sequences of Ctgf mRNA and PVT1, suggesting that miR-26b may interact with both PVT1 and Ctgf mRNA. In line with this, we found that overexpression of PVT1 reduced expression of miR-26b and miR-186 but activated expression of Srf, Ctgf, LC3B-II, and Beclin-I. ConclusionsUpregulation of PVT1 by exposure to hypoxia promoted the expression of CTGF, leading to deregulation of autophagy and abnormal proliferation of PASMCs. Dysregulation of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways may be involved in the pathogenesis of hypoxia-induced PASMCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.