Abstract

Migration of extravillous trophoblasts (EVT) into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT)-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12) using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/106cells/48 h) and bioactivity were established. HTR-8/SVneo (EVT) were used as target cells to establish the effect (bioactivity) of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™). The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001). Under low oxygen tensions (i.e. 1% O2), CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.

Highlights

  • The aim of this study was to test the hypotheses that: (i) exosomes released by cytotrophoblast cells (CT) increase extravillous trophoblast cells (EVT) proliferation and invasion; and (ii) the bioactivity and protein content of CT-derived exosomes is altered by oxygen tension

  • During early pregnancy low oxygen tension may impact on EVT migration and interactions with the maternal spiral arterioles [24,25,26]

  • Exosomes from cytotrophoblast cells may interact with EVT and modify their invasiveness, the effect and role of exosomes from placental cells has yet to be defined

Read more

Summary

Introduction

The events that occur from the time of implantation to maternal perfusion of the placenta are influenced and directed by site-specific oxygen tensions [1]. At the time of embryo implantation, the intrauterine oxygen tension is ,3% [2] while the decidua and myometrium oxygen tension is ,8–12% [3]. This standing oxygen gradient is thought to promote and direct the invasion of extravillous trophoblast cells (EVT) into the decidua and myometrium where they engage and remodel maternal spiral arterioles [4,5]. Intraluminal EVT occludes spiral arterioles to maintain a low oxygen tension environment that is requisite for normal early placental and fetal development. Towards the end of the first trimester, low resistance, high capacity flow is restored and the placental intravillous space is perfused with the maternal blood establishing effective materno-fetal exchange

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call