Abstract

Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and stimulates growth and other activities of ovarian cancer cells in vitro. Tissue hypoxia is a critical factor for tumor aggressiveness and metastasis in cancers. We tested whether the ascites of ovarian cancer is hypoxic and whether hypoxia influences the effects of LPA on ovarian cancer cells. We found that ovarian ascitic fluids were hypoxic in vivo. Enhanced cellular responsiveness to LPA, including migration and/or invasion of ovarian cancer cells, was observed under hypoxic conditions. This enhancement could be completely blocked by geldanamycin or a small interfering RNA targeting hypoxia-inducible factor 1 alpha (HIF1 alpha). LPA-induced cell migration required cytosolic phospholipase A(2) (cPLA(2)) and LPA stimulates cPLA(2) phosphorylation in a HIF1 alpha-dependent manner under hypoxia conditions. Furthermore, we show for the first time that exogenous LPA enhances tumor metastasis in an orthotopic ovarian cancer model and HIF alpha expression in tumors. 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (an inhibitor of the heat shock protein 90) effectively blocked LPA-induced tumor metastasis in vivo. Together, our data indicate that hypoxic conditions are likely to be pathologically important for ovarian cancer development. HIF1 alpha plays a critical role in enhancing and/or sensitizing the role of LPA on cell migration and invasion under hypoxic conditions, where cPLA(2) is required for LPA-induced cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call