Abstract

The major hallmark of rotator cuff tendinopathies (RCT) is the disorganization of the tendon extracellular matrix (ECM), which is due to a decrease in the ratio of collagen I to collagen III. In addition, the pathology of the tendon matrisome remains asymptomatic, and hypoxia has been identified to be the priming signal to initiate the molecular pathology of RCT. Also, the secretome content of hypoxia-challenged tendon cells (tenocytes) reflects the pathological status of RCT. With this background, the present study was designed to establish the expression status and molecular crosstalk of the ECM component proteins contained in the exosomes of the hypoxia-challenged swine tenocytes. The mass spectrometry analysis revealed the upregulation of COL1A2, P4HA1, PRDX2, P3H1, COL6A1, PPIB, LCN1, and COL3A1 and the downregulation of COLA12, PDIA4, COLG, FN1, CTSK, and TNC in the exosomes of hypoxic tenocytes. These proteins interact with diverse proteins and operate multiple pathways associated with ECM homeostasis and repair as determined by NetworkAnalyst. The functional analysis of these proteins reflects the pathology of tendon ECM, which is correlated with the asymptomatic phase of RCT. Understanding the signaling mediated by these proteins would reveal the underlying molecular pathology and offers translational significance in the diagnosis and management of RCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.