Abstract

Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, has been shown to play pivotal roles in bile acid homeostasis by regulating the biosynthesis, conjugation, secretion and absorption of bile acids. Accumulating data suggest that FXR signaling is involved in the pathogenesis of liver and metabolic disorders. Here we show that FXR expression is significantly suppressed in HepG2 cells exposed to hypoxia. Concomitantly, the expression of the bile salt export pump, known as an FXR target gene product and responsible for the excretion of bile acids from the liver, is also decreased under hypoxia. Overexpression of hypoxia-inducible factor (HIF)-1alpha does not mimic the suppressive effect of hypoxia on FXR expression. Furthermore, simultaneous knockdown of HIF-1alpha, HIF-2alpha and HIF-3alpha fails to restore the FXR expression level under hypoxia, indicating that HIF is not involved in hypoxia-evoked FXR downregulation. Instead, we demonstrate that p38 mitogen-activated protein kinase is an indispensable factor for FXR downregulation under hypoxia. Thus, we propose a novel liver disorder model in which two signaling molecules, p38 mitogen-activated protein kinase and FXR, may contribute to the linkage of two pathogenic conditions, i.e. ischemia, a condition accompanying hypoxia, and cholestasis, a condition with intrahepatic accumulation of cytotoxic bile acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.