Abstract

Disturbance in the expression of circadian rhythm genes is a common feature in certain types of cancer, however the mechanisms mediating this disturbance remain to be elucidated. The present study aimed to investigate the effect of hypoxia on the expression of circadian rhythm genes in liver cancer cells and to identify the mechanisms underlying this effect in hepatocellular carcinoma (HCC). The HCC cell line, PLC/PRF/5. was treated with either a vehicle control or CoCl2 at 50, 100 or 200 µΜ for 24 h. Following treatment, the protein expression levels of hypoxia‑inducible factor (HIF)‑1α and HIF‑2α were detected by western blotting and the mRNA expression levels of circadian rhythm genes, including circadian locomotor output cycles kaput (Clock), brain and muscle Arnt‑like 1 (Bmal1), period (Per)1, Per2, Per3, cryptochrome (Cry)1, Cry2 and casein kinase Iε (CKIε), were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR). Expression plasmids containing HIF‑1α or HIF‑2α were transfected into the PLC/PRF/5 cells using liposomes and RT‑qPCR was used to determine the effects of the transfections on the expression levels of circadian rhythm genes. Following treatment with CoCl2, the protein expression levels of HIF‑1α and HIF‑2α were upregulated in a CoCl2 concentration‑dependent manner. The mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased following CoCl2 treatment (P<0.05). In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑1α, the mRNA expression levels of Clock, Bmal1 and Cry2 were increased, and the mRNA expression levels of Per1, Per2, Per3, Cry1 and CKIε were decreased. In the PLC/PRF/5 cells transfected with the plasmid containing HIF‑2α, the mRNA expression levels of Clock, Bmal1, Per1, Cry1, Cry2 and CKIε were upregulated, and the mRNA expression levels of Per2 and Per3 were downregulated (P<0.05). A hypoxic microenvironment may contribute to the disturbance in the expression of circadian genes in HCC. HIF‑1α and HIF‑2α are involved in this process and have redundant, but not identical effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.