Abstract

Aggressive enteral nutrition and poor intestinal perfusion are hypothesized to play an important pathogenic role in nonocclusive small bowel necrosis. This study tests the hypothesis that glucose and glutamine transport are differentially regulated during hypoxia regardless of the luminal nutrient present. Sprague-Dawley rats (247 +/- 3 g; n = 16) were randomized to receive 1 h of intestinal hypoxia or serve as normoxic controls. During this hour, jejunal loops were randomized to receive in situ perfusions of mannitol, glucose, or glutamine. When compared with normoxic groups, glucose but not glutamine transport was impaired (P < 0.001) during hypoxia. Messenger RNA abundance of the sodium glucose cotransporter sodium-dependent glucose cotransporter-1 (SGLT-1) and neutral basic amino acid transporter B(o) did not differ with hypoxia or nutrient perfused. Jejunal brush-border SGLT-1 abundance was decreased (P = 0.039) with hypoxia; however, total cellular SGLT-1 protein abundance did not differ among treatment groups. These data indicate that SGLT-1 activity is regulated during hypoxia at the posttranslational level. Additional information regarding the mechanisms regulating nutrient transport in the hypoperfused intestine is critical for optimizing the composition of enteral nutrient formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.