Abstract
The angiogenic function of endothelial cells (ECs) is very important to tissues and organs that suffer from hypoxic injury. Exploring the role of endoplasmic reticulum (ER) Ca2+ homeostasis in angiogenesis under hypoxic conditions may provide new insight into the development of novel therapeutic approaches. Our research project evaluated the damaging effect of hypoxia on ER Ca2+ homeostasis in ECs during angiogenesis. Human umbilical vein endothelial cells (HUVECs) were isolated from the umbilical cord. We applied cobalt (II) chloride (CoCl2) to mimic hypoxic conditions. Changes in the angiogenic function of HUVECs under hypoxic conditions were evaluated. Dynamic changes in ER and cytosolic (Cyto) Ca2+ and reactive oxygen species (ROS) signalling were detected. In addition, Western blotting (WB) was performed to evaluate the expression levels of related proteins under different conditions. Treatment of HUVECs with 100 μM CoCl2 for 4 h successfully mimicked hypoxia and induced the generation of ROS signals. Processes related to HUVEC angiogenic function, including cell viability, tube formation, and migration, were significantly inhibited under hypoxic conditions. During these processes, Ca2+ was released from the ER of HUVECs and extracellular Ca2+ entered the cells, which resulted in Cyto Ca2+ overloading. The WB results showed that mimicking hypoxia increased AMPK-pAMPK activity. Hypoxic conditions also reduced the Ca2+ restoration ability of the ER by decreasing sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) expression and PLN phosphorylation. HUVEC angiogenic function can be disrupted under hypoxic conditions by decreasing Ca2+ restoration by the ER. This may provide new insight for the future development of novel therapies. However, the detailed mechanism requires further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.