Abstract

Hypoxia causes several renal tubular dysfunctions, including abnormal handling of potassium and sodium and increased blood pressure. Therefore, we investigated the impact of hypoxia on 11beta-hydroxysteroid dehydrogenase (11beta-HSD2) enzyme, a crucial prereceptor gatekeeper for renal glucocorticosteroid-mediated mineralocorticoid action. The effect of hypoxia was assessed in vitro by incubating LLC-PK1 cells with antimycin A, an inhibitor of mitochondrial oxidative phosphorylation. Antimycin A induced a dose- and time-dependent reduction of 11beta-HSD2 activity. The early growth response gene, Egr-1, a gene known to be stimulated by hypoxia was investigated because of a potential Egr-1 binding site in the promoter region of 11beta-HSD2. Antimycin A induced Egr-1 protein and Egr-1-regulated luciferase gene expression. This induction was prevented with the MAPKK inhibitor PD 98059. Overexpression of Egr-1 reduced endogenous 11beta-HSD2 activity in LLC-PK1 cells, indicating that MAPK ERK is involved in the regulation of 11beta-HSD2 in vitro. In vivo experiments in rats revealed that Egr-1 protein increases, whereas 11beta-HSD2 mRNA decreases, in kidney tissue after unilateral renal ischemia and in humans the renal activity of 11beta-HSD2 as assessed by the urinary ratio of (tetrahydrocortisol+5alpha-tetrahydrocortisol)/tetrahydrocortisone declined when volunteers were exposed to hypoxemia at high altitude up to 7000 m. Thus, hypoxia decreases 11beta-HSD2 transcription and activity by inducing Egr-1 in vivo and in vitro. This mechanism might account for enhanced renal sodium retention and hypertension associated with hypoxic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call