Abstract
Non-small cell lung cancers (NSCLCs) frequently exhibit resistance to therapeutic drugs, which seriously hampers their treatment. Here, we set out to assess the roles of the multidrug resistance protein 1 (MRP1) and P-glycoprotein (P-gp) in the doxorubicin (DOX) resistance of NSCLC cells, as well as the putative therapeutic efficacy of MRP1 and P-gp blockers on DOX-treated NSCLC cells. The impact of DOX on cell survival, DOX efflux and MRP1 and P-gp expression was assessed in 5 different NSCLC-derived cell lines (parental CH27, A549, H1299, H460, and DOX resistant CH27) in the absence or presence of MK571 (MRP1 inhibitor) or Verapamil (P-gp inhibitor), under both normoxic and hypoxic conditions. We found that in response to DOX treatment, NSCLC cells that express high levels of MRP1 and P-gp (such as CH27) showed a better DOX efflux and a higher DOX resistance. MK571 and Verapamil were found to abolish DOX resistance and to act as chemosensitizers for DOX therapy in all cell lines tested. We also found that hypoxia could inhibit MRP1 and P-gp expression in a HIF-1α-dependent manner, abolish DOX resistance and boost the chemosensitizer effect of MK571 and Verapamil on DOX treatment of all the NSCLC cells tested, except the DOX-resistant CH27 cells. From our data we conclude that MRP1 and P-gp play critical roles in the DOX resistance of the NSCLC cells tested. MRP1 and P-gp targeted therapy using MK571, Verapamil, CoCl2 or ambient hypoxia appeared to be promising in abolishing the DOX efflux and DOX resistance of the NSCLC cells. The putative therapeutic efficacies of MRP1 and/or P-gp blockers on NSCLC cells are worthy of note.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.