Abstract

To establish an effective cancer immunotherapy, it is crucial that cancer cells present a cancer-specific antigen in a hypoxic area, a hallmark of the tumor microenvironment. Here, we show the impact of hypoxia on MHC class I antigen presentation in vitro and in vivo in murine tumors. Activation of antigen-specific CTLs by tumor cells that had been pre-incubated under a condition of hypoxia was enhanced compared with that by tumor cells pre-incubated under a condition of normoxia. Cell surface expression of MHC class I-peptide complex on the tumor cells was increased under a condition of hypoxia, thereby leading to higher susceptibility to specific CTLs. We show that the hypoxia-inducible ER-resident oxidase ERO1-αplays an important role in the hypoxia-induced augmentation of MHC class I-peptide complex expression. ERO1-αfacilitated oxidative folding of MHC class I heavy chains, thereby resulting in the augmentation of cell surface expression of MHC class I-peptide complex under hypoxic conditions. These results suggest that since the expression of MHC class I-peptide complex is augmented in a hypoxic tumor microenvironment, strategies for inhibiting the function of regulatory T cells and myeloid-derived suppressor cells and/or immunotherapy with immune checkpoint inhibitors are promising for improving cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.