Abstract

This review mainly focuses on our understanding of spermatogenesis in physiological and pathological hypoxic condition. Real hypoxia is closely related to vascular changes and an increase in testicular temperature. Both induce a reduction in sperm count and can be related to the increase in germ cell apoptosis. On the other hand, change in the temperature, and oxygen levels in the microenvironment have influence on spermatogonial stem cell function and differentiation. The initial connection between hypoxia and a factor critical for stem cell maintenance is alteration in Oct-4 expression, and these data may be a useful strategy for modulating stem cell function. Unilateral testicular ischemia-induced cell death can be accompanied by an increase in germ cell apoptosis in the contralateral testis. The injury of contralateral testis following unilateral testicular damage is controversial, and it can contribute to the reduction in fertility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call