Abstract

To keep fast proliferation, tumor cells are exposed to higher oxidative stress than normal cells and they upregulate the amount of some antioxidants such as glutathione (GSH) against reactive oxygen species to maintain the balance. This phenomenon is severe in hypoxic tumor cells. Although researchers have proposed a series of treatment strategies based on regulating the intracellular reactive oxygen species level, few of them are related to the hypoxic tumor. Herein, a novel organic compound (PLC) was designed by using lysine as a bridge to connect two functional small molecules, a hypoxia-responsive nitroimidazole derivative (pimonidazole) and a pH-responsive cinnamaldehyde (CA) derivative. Then, the oxidative stress amplifying ability of PLC in hypoxic tumor cells was evaluated. The acidic microenvironment of tumor can trigger the release of CA to produce reactive oxygen species. Meanwhile, large amount of nicotinamide adenine dinucleotide phosphate (NADPH) can be consumed to decrease the synthesis of GSH during the bio-reduction process of the nitro group in PLC under hypoxic conditions. Therefore, the lethal effect of CA can be amplified for the decrease of GSH. Our results prove that this strategy can significantly enhance the therapeutic effect of CA in the hypoxic tumor cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.