Abstract
Keloids are reactive or spontaneous fibroproliferative dermal tumors characterized by the exaggerated and uncontrolled accumulation of extracellular collagen. Current approaches to mitigate keloidogenesis are largely procedural in nature. However, a better understanding of its biological drivers may lead to novel targeted treatments for keloids. Through whole-genome expression analysis, we found that an HIF-1α transcriptional footprint is preferentially upregulated (activation score= 2.024; P= 1.05E-19) in keloid fibroblasts compared with normal dermal fibroblasts. We verified that HIF-1α protein is more strongly expressed in keloid specimens compared with normal skin (P= 0.035) and that hypoxia (1% O2) leads to increased collagen, especially in the extracellular compartment. Collagen levels were reduced uniformly by selective HIF-1α inhibitor CAY10585. Our results indicate that collagen secretion may be intimately linked to a hypoxic microenvironment within keloid tumors and that HIF-1α blockade could be a novel avenue of treatment for these tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.