Abstract

Macrophages are the most abundant cells in infected tissue and are involved in the clearing infection, and immunomodulation of the innate and adaptive immune response. NS80 virus of influenza A virus, which encodes only the first 80 aa of the NS1 protein, suppresses the immune host response and is associated with enhanced pathogenicity. Hypoxia promotes infiltration of peritoneal macrophages into the adipose tissue and production of cytokines. To understand the role of hypoxia in the regulation of immune response, macrophages were infected with A/WSN/33 (WSN) and NS80 virus, and transcriptional profiles of the RIG-I-like receptor signalling pathway and expression of cytokines were evaluated in normoxia and hypoxia. Hypoxia inhibited the proliferation of IC-21 cells, downregulated the RIG-I-like receptor signalling pathway, and inhibited transcriptional activity of IFN-α, IFN-β, IFN-ε, and IFN-λ mRNA in infected macrophages. While transcription of IL-1β and Casp-1 mRNAs were increased in infected macrophages in normoxia, hypoxia resulted in decreased transcription activity of IL-1β and Casp-1 mRNAs. Hypoxia significantly affected expression of the translation factors IRF4, IFN-γ, and CXCL10 involved in regulation of immune response and polarization of the macrophages. The expression of pro-inflammatory cytokines such as sICAM-1, IL-1α, TNF-α, CCL2, CCL3, CXCL12, and M-CSF was to a large extent affected in uninfected and infected macrophages cultivated in hypoxia. The NS80 virus increased the expression of M-CSF, IL-16, CCL2, CCL3, and CXCL12, especially under hypoxia. The results show that hypoxia may play an important role in peritoneal macrophage activation, regulates the innate and adaptive immune response, changes production of pro-inflammatory cytokines, promotes macrophage polarization, and could affect the function of other immune cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.