Abstract

Tibetan chick lives at high altitudes between 2600 and 4200 m with a high hatchability and low land breeds survive rarely with a hatchability of 3.0% under hypoxia of simulated 4200 m. Under hypoxia of whole 21 d, the hatchability of Tibetan chick and Recessive White Feather broiler differed with a greatest disparity from day 4 to 11 and also significantly in other stages except from day 1 to 3. Hypoxia in each stage did not reduce significantly survival rate of this stage except hatchability. These two results indicated that the hypoxia in the early stage had an adverse effect on the later stage. All exons encoding chick hemoglobins were sequenced to analyze gene polymorphism. The functional mutation Met-32(B13)-Leu, related with hypoxia, was found in alphaD globin chain and the mutation frequency increased with increased altitude. In addition, under hypoxic conditions, the population with higher mutation frequency had a higher hatchability. The automated homology model building was carried out using crystal structure coordinates of chick HbD. The results indicated that the substitution Met-32(B13)-Leu provides a more hydrophobic environment which leads to higher stability of heme and oxygen affinity of hemoglobin. The occurrence of the mutation Met-32(B13)-Leu is related to the origin of Tibetan chick.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.