Abstract

Placental growth factor (PlGF), a proangiogenic member of vascular endothelial growth family, is active during pathological conditions like cancer, metastasis formation and hind limb ischemia and in wound healing. Endothelial cells express PlGF and hypoxia positively modulates in vitro its expression. To verify whether hypoxia modulates PlGF expression in different cellular contexts and in vivo, we first analyzed five human and five mouse cancer cell lines showing that in eight of them hypoxia positively modulates PlGF. Next, we analyzed xenograft colorectal cancer tumors showing that human cancer cells were able to express PlGF in hypoxic area of the tumor. Surprisingly, we did not visualize mouse PlGF in CD31 positive tumor vessels, but in low CD31 positive vessels, a characteristic of lymphatic vessels. We found that hypoxia effectively activates PlGF expression in lymphatic endothelial cells as well as in LYVE1 positive tumor vessels. We also investigated two additional mouse angiogenic models, hind limb ischemia and wound healing, and we confirmed that lymphatic vessels of both ischemic muscles and skin express PlGF. These results show for the first time that hypoxia activates PlGF expression in lymphatic endothelial cells, which have to be considered an additional source for PlGF production in pathological contexts.

Highlights

  • Placental growth factor (PlGF) is a member of vascular endothelial growth factor (VEGF) family

  • Human and mouse cancer cell lines of different origin were cultured in normoxic and hypoxic (1% O2) conditions and the expression of PlGF was evaluated by reverse transcription quantitative real-time PCR (RT-qPCR) and ELISA (Figure 1)

  • These data clearly show that PlGF is effectively upregulated by hypoxia in vitro in almost all the human and mouse tumor cell lines assayed, confirming what we previously observed in endothelial cells [23]

Read more

Summary

Introduction

Placental growth factor (PlGF) is a member of vascular endothelial growth factor (VEGF) family. It is a specific ligand for the common receptor of pro-angiogenic members (VEGF-A, VEGF-B and PlGF) of the family, the high affinity VEGF receptor, VEGFR1. PlGF is redundant for physiological processes [2] but has an active role confined to pathological conditions [3]. Genetic ablation or biochemical inhibition of PlGF impair angiogenesis and arteriogenesis associated to pathological conditions such as tumor growth, heart, limb and ocular ischemia [3,4,5,6,7].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call