Abstract

We designed the present study to see whether, during acute moderate isocapnic hypoxemia, changes in cerebral vascular resistance (CVR) and brain extracellular fluid (ECF) [H+] can or cannot be dissociated from each other. In seven anesthetized and paralyzed dogs we measured brain ECF pH with surface electrodes (n = 4) or double-barreled microelectrodes (n = 3) with tip diameters of less than 30 micron inserted 5 mm below the surface. Cerebral blood flow (CBF) was measured by radioactive microspheres during normoxemia and moderate hypoxemia, whereas brain ECF pH was measured continuously. In six of the seven dogs brain pH did not change during moderate hypoxemia of 4-20 min duration. In these six animals the mean arterial O2 partial pressure decreased from 84.8 +/- 12.9 (SD) to 46.7 +/- 10.2 Torr during hypoxic gas breathing, resulting in a significant drop in CVR from 3.88 +/- 1.88 to 3.27 +/- 1.97 Torr X ml-1 X min X 100 g and a rise in CBF from 31.7 +/- 12.7 to 47.8 +/- 31.5 ml X min-1 X 100 g-1. The mean brain ECF [H+] was 57.4 +/- 8.2 nmol/l (pH = 7.24) during normoxemia and did not change significantly during hypoxic gas breathing [56.6 +/- 7.7 nmol/l (pH = 7.25)]. Furthermore, arterial and sagittal venous blood and cisternal cerebrospinal fluid (CSF) pH did not change significantly during hypoxic gas breathing. We conclude that during acute moderate hypoxemia reduction in CVR can occur independently from increases in brain ECF, cisternal CSF, and arterial and sagittal venous blood [H+] and PCO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.