Abstract
The Lesch-Nyhan syndrome is characterized clinically by choreoathetosis, spasticity, selfmutilation, and mental and growth retardation. Biochemically, there is a striking reduction of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity in affected individuals. We have examined erythrocytes from 14 patients with the Lesch-Nyhan syndrome for the presence of hypoxanthine-guanine phosphoribosyltransferase activity and enzyme protein. In contrast to the usual finding of no detectable hypoxanthine-guanine phosphoribosyltransferase activity, we have found low levels (0.002-0.79 nmoles/mg protein per hr) of hypoxanthine-guanine phosphoribosyltransferase activity in erythrocyte lysates from five of these patients. In three of the five patients, hypoxanthine-guanine phosphoribosyltransferase activity appeared to be substantially more labile in vivo than normal using erythrocytes which had been separated according to their density (age). Immunochemical studies using a monospecific antiserum prepared from a homogeneous preparation of normal human erythrocyte hypoxanthine-guanine phosphoribosyltransferase revealed immunoreactive protein (CRM) in hemolysate from all 14 patients with the Lesch-Nyhan syndrome. The immunoreactive protein from each patient gave a reaction of complete identity with normal erythrocyte hypoxanthine-guanine phosphoribosyltransferase and was present in quantities equal to those observed in normal erythrocytes. In addition, a constant amount of CRM was found in erythrocytes of increasing density (age) from patients with the Lesch-Nyhan syndrome despite the decreasing hypoxanthine-guanine phosphoribosyltransferase activity. These studies confirm previous data which indicate that the mutations leading to the Lesch-Nyhan syndrome are usually, if not always on the structural gene coding for hypoxanthine-guanine phosphoribosyltransferase. In addition, although the mutant proteins appear to be present in normal amounts, they are often very labile in vivo with respect to enzymatic activity. These observations suggest that therapy directed at stabilization or activation of enzyme activity in vivo may be of potential benefit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.