Abstract

Summary Background: The polycystic ovary syndrome (PCOS) is a frequent endocrine disorder that affects women of reproductive age. As the syndrome is strongly associated with obesity, it is of interest to examine the gene expression diffe rences that accompany its development and the associ a ted metabolic disturbances. Real-time RT PCR is a standard method for studying changes in gene expression. However, to obtain accurate and reliable results, validation of reference genes is obligatory. The aim of this study was to identify a suitable reference for the normalization of gene expression in peripheral blood mononuclear cells (PBMCs) from obese and normal-weight women with PCOS. Methods: The expression stability of four potential reference genes: hypoxanthine guanine phosphoribosyl trans-ferase 1 (HPRT), β-actin (BA), β2-microglobulin (B2M) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was assessed in PBMCs from healthy women, and from normal-weight and obese women with PCOS. The variability in the expression of potential reference genes was analyzed by the TaqMan real-time RT PCR method, using GeNorm and NormFinder software packages. Results: Direct comparison of cycle threshold (Ct) values showed inter-individual variations for all validated genes, the Ct values of HPRT being less variable than those of BA, GAPDH and B2M. Both software packages pointed to HPRT as the most steadily expressed gene in the PBMCs of women with PCOS and healthy controls. Conclusions: Cross-validation of the expression stability of four potential reference genes identified HPRT as the most stable reference, suitable for further investigations of gene expression in PBMCs from women with PCOS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.