Abstract

Ethnopharmacological relevancePalmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. Aim of the studyThis study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. Material and methodsA mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. ResultsAdministration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1β and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. ConclusionsThese findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.