Abstract
The purpose of this study was to evaluate the effects of dysthyroidism on lipid peroxidation, antioxidants status, liver, and serum dysfunction parameters in the hypo-/hyperthyroidism-induced rats. Hypothyroidism and hyperthyroidism conditions were induced for 5 weeks by administration of 0.05% benzythiouracile (BTU) and l-thyroxine sodium salt (0.0012%), in drinking water, respectively. The enzymatic activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and the lipid peroxidation product; thiobarbituric acid reacting substances (TBARS) were measured in liver as indicators of oxidative damage. However, liver dysfunction parameters represented by the activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma glutamyl transferase (GGT), were measured in serum. In hyperthyroidism rats, the TBARS contents of liver have significantly increased compared to those in hypothyroid rats and the controls (p<0.001), associated with a fall of the total antioxidant status (TAS) in the serum of the hyperthyroid rats. The SOD, CAT, and GPx activities in liver of hyperthyroid rats have significantly increased compared to hypothyroid rats and the controls (p<0.001). The AST, ALT, LDH, GGT, and ALP activities increased in the hyperthyroidism rats (p<0.05).We conclude that thyroid dysfunction induces oxidative stress and modifies some biochemical parameters of liver. Our results show the occurrence of a state of oxidizing stress in relation to hyperthyroidism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.