Abstract

Summary Community detection in networks is a key exploratory tool with applications in a diverse set of areas, ranging from finding communities in social and biological networks to identifying link farms in the World Wide Web. The problem of finding communities or clusters in a network has received much attention from statistics, physics and computer science. However, most clustering algorithms assume knowledge of the number of clusters k. We propose to determine k automatically in a graph generated from a stochastic block model by using a hypothesis test of independent interest. Our main contribution is twofold; first, we theoretically establish the limiting distribution of the principal eigenvalue of the suitably centred and scaled adjacency matrix and use that distribution for our test of the hypothesis that a random graph is of Erdős–Rényi (noise) type. Secondly, we use this test to design a recursive bipartitioning algorithm, which naturally uncovers nested community structure. Using simulations and quantifiable classification tasks on real world networks with ground truth, we show that our algorithm outperforms state of the art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.