Abstract
Generation and characterization of entanglement are crucial tasks in quantum information processing. A hypothesis testing scheme for entanglement has been formulated. Three designs were proposed to test the entangled photon states created by the spontaneous parametric down conversion. The time allocations between the measurement vectors were designed to consider the anisotropic deviation of the generated photon states from the maximally entangled states. The designs were evaluated in terms of the p-value based on the observed data. It has been experimentally demonstrated that the optimal time allocation between the coincidence and anti-coincidence measurement vectors improves the entanglement test. A further improvement is also experimentally demonstrated by optimizing the time allocation between the anti-coincidence vectors. Analysis on the data obtained in the experiment verified the advantage of the entanglement test designed by the optimal time allocation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.