Abstract

Entropic quantifiers of states lie at the cornerstone of the quantum information theory. While a quantum state can be abstracted as a device that only has outputs, the most general quantum device is a quantum channel that also has inputs. In this work, we extend the entropic quantifiers of states to the ones of channels. In the one-shot and asymptotic scenarios, we propose relative entropies of channels under the task of hypothesis testing. Then, we define the entropy of channels based on relative entropies from the target channel to the completely depolarising channel. We also study properties of relative entropies of channels and the interplay with entanglement. Finally, based on relative entropies of channels, we propose general resource theories of channels and discuss the coherence of general channels and measurements, and the entanglement of channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call