Abstract
Recent studies demonstrated the existence in vivo of various functional DNA structures that differ from the double helix. The G-quadruplex (G4) and intercalated motif (I-motif or IM) DNA structures are formed as knots where, correspondingly, guanines or cytosines on the same strand of DNA bind to each other. There are grounds to believe that G4 and IM sequences play a significant role in regulating gene expression considering their tendency to be found in or near regulatory sites (such as promoters, enhancers, and telomeres) as well as the correlation between the prevalence of G4 or IM conformations and specific phases of cell cycle. Notably, G4 and IM capable sequences tend to be found on the opposite strands of the same DNA site with at most one of the two structures formed at any given time. The recent evidence that K+, Mg2+ concentrations directly affect IM formation (and likely G4 formation indirectly) lead us to believe that these structures may play a major role in synaptic plasticity of neurons, and, therefore, in a variety of central nervous system (CNS) functions including memory, learning, habitual behaviors, pain perception and others. Furthermore, epigenetic mechanisms, which have an important role in synaptic plasticity and memory formation, were also shown to influence formation and stability of G4s and IMs. Our hypothesis is that non-canonical DNA and RNA structures could be an integral part of neuroplasticity control via gene expression regulation at the level of transcription, translation and splicing. We propose that the regulatory activity of DNA IM and G4 structures is modulated by DNA methylation/demethylation of the IM and/or G4 sequences, which facilitates the switch between canonical and non-canonical conformation. Other neuronal mechanisms interacting with the formation and regulatory activity of non-canonical DNA and RNA structures, particularly G4, IM and triplexes, may involve microRNAs as well as ion and proton fluxes. We are proposing experiments in acute brain slices and in vivo to test our hypothesis. The proposed studies would provide new insights into fundamental neuronal mechanisms in health and disease and potentially open new avenues for treating mental health disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.