Abstract

We investigate the complexity of the reactive sputtering of highly conductive zinc oxide thin films in the presence of hydrogen at room temperature. We report on the importance of precise geometric positioning of the substrate with respect to the magnetron to achieve maximum conductivity. We examine the electrical properties of the deposited thins films based on their position on the substrate holder relative to the magnetron. By considering early reports by other researchers on the angular dependency of plasma parameters and the effect of hydrogen doping on electric and magnetic properties of hydrogen-doped zinc oxide, we propose a hypothesis on the possibility of such properties resulting in the observations presented in this report pending further tests to verify this hypothesis. Overall, in this report we present the guide by which highly conductive zinc oxide thin film coatings can be prepared via RF sputtering with hydrogen presence along with argon as the sputtering gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.