Abstract

Cold perfusion through the renal arteries during renal ischemia has been suggested to diminish postoperative renal damage after juxtarenal aortic aneurysm repair. As the kidneys play a key role in dimethylarginine metabolism, which in turn is associated with renal hemodynamics, we hypothesized that the protective effect of cold perfusion is associated with a preserved renal extraction of dimethylarginines. Renal ischemia was induced in three groups of anesthetized Wistar rats (n = 7/group), which underwent suprarenal aortic clamping (45 min) with no perfusion (group 1), renal perfusion with 37°C saline (group 2), or renal perfusion with 4°C saline (group 3), respectively, followed by 90 min of renal reperfusion in all groups. The sham group had no clamping. In group 3 (renal ischemia with cold perfusion), postoperative serum creatinine levels as well as the presence of luminal lipocalin-2 and its associated brush-border damage were lower compared with groups 1 and 2 (P < 0.05). Also, renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine as well as the arginine/ADMA ratio, which defines the bioavailability of nitric oxide, remained intact in group 3 only (P < 0.04). The arginine/ADMA ratio correlated with cortical flow, lipocalin-2, and creatinine rises. Warm and cold renal perfusion (groups 2 and 3) during ischemia were similarly effective in lowering protein nitrosylation levels, renal leukocyte accumulation, neutrophil gelatinase-associated lipocalin (NGAL) expression in distal tubules, and urine NGAL (P < 0.05). These data support the use of cold renal perfusion during renal ischemia in situations where renal ischemia is inevitable, as it reduces tubular damage and preserves renal extraction of dimethylarginines. Renal perfusion with saline per se during renal ischemia is effective in diminishing renal leukocyte accumulation and oxidative stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.