Abstract

The nitrogen metabolic pathways of Pseudomonas taiwanensis J488 have not been confirmed from genomic function analysis and its divalent metal ion resistance remains poorly understood. In this study, the key denitrifying gene of Pseudomonas taiwanensis J488, nirB, was determined by draft genome sequencing. The nitrification of ammonium was insensitive to high concentrations of Ca(II), Mn(II), Zn(II), and Cd(II). Similarly, complete nitrite removal was achieved despite Mn(II) and Zn(II) reaching concentrations up to 30 mg/L. Furthermore, the efficiency of nitrate removal was significantly enhanced by 1.33%, 3.33%, 5.99%, and 1.53% with the addition of 0.5 mg/L Ca(II), 20 mg/L Mn(II), 5 mg/L Zn(II), and 2 mg/L Cd(II), respectively, comparison with the control. The bacterial growth in both nitrifying and denitrifying processes was substantially promoted by various dosages of divalent metal ions. These results indicate that divalent metal ions would not severely limit the capacity of strain J488 to purify nitrogen-polluted wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.