Abstract

Objective: Mild hypothermia (32-33°C) shows protective effects in patients with brain damage and cardiac arrest. Although cold-inducible RNA-binding protein (CIRP) contributes to the protective effects of hypothermia through extracellular signal-regulated kinase activation in fibroblasts, the effects of hypothermia in the liver remain unclear. Methods: We analysed the effects of cold temperature on fulminant hepatitis, a potentially fatal disease, using the <smlcap>D</smlcap>-galactosamine (GalN)/lipopolysaccharide (LPS) and concanavalin (con) A-induced hepatitis models in mice. After GalN/LPS administration and anaesthesia, mice in the hypothermia group were kept at 25°C and those in control group were kept at 35°C. After concanavalin A (con A) administration, the mice in the hypothermia group were placed in a chamber with an ambient temperature of 6°C for 1.5 h. Results: Hypothermia attenuated liver injury and prolonged survival. Activation of c-Jun N-terminal kinase and Akt, which are involved in reactive oxygen species (ROS) accumulation, was suppressed by low temperature. Hypothermia significantly decreased oxidized protein levels, and treatment with N-acetyl-<smlcap>L</smlcap>-cysteine, an antioxidant, attenuated GalN/LPS-induced liver injury. In con A-induced hepatitis, CIRP expression was upregulated and Bid expression was downregulated, resulting in decreased apoptosis of hepatocytes in the hypothermia group. Conclusions: These data suggest that hypothermia directly protects hepatocytes from cell death via reduction of ROS production in fulminant hepatitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.