Abstract

Pharmacological studies have suggested hypothalamic phosphodiesterase-3B to mediate leptin and insulin action in regulation of energy homeostasis. Whereas Pde3b-null mice show altered energy homeostasis, it is unknown whether this is due to ablation of Pde3b in the hypothalamus. Thus, to address the functional significance of hypothalamic phosphodiesterase-3B, we used Pde3bflox/flox and Nkx2.1-Cre mice to generate Pde3b Nkx2.1KD mice that showed 50% reduction of phosphodiesterase-3B in the hypothalamus. To determine the effect of partial ablation of phosphodiesterase-3B in the hypothalamus on energy and glucose homeostasis, males and females were subjected to either a low- or high-fat diet for 19–21 weeks. Only female but not male Pde3b Nkx2.1KD mice on the low-fat diet showed increased body weight from 13 weeks onward with increased food intake, decreased fat pad weights and hypoleptinemia. Glucose tolerance was improved in high-fat diet-fed male Pde3b Nkx2.1KD mice in association with decreased phosphoenolpyruvate carboxykinase-1 and glucose-6-phosphatase mRNA levels in the liver. Also, insulin sensitivity was increased in male Pde3b Nkx2.1KD mice on the low-fat diet. Changes in body weight or in glucose homeostasis were not associated with any alteration in hypothalamic proopiomelanocortin, neuropepide Y and agouti-related peptide mRNA levels. These results suggest that partial loss of phosphodiesterase-3B in the hypothalamus produces a sex-specific response in body weight and glucose homeostasis, and support a role, at least in part, for hypothalamic phosphodiesterase-3B in regulation of energy and glucose homeostasis in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call