Abstract

Immunohistochemistry combined with retrograde tract-tracing techniques were used to investigate the distribution of orexin-A (OX-A)- and OX-A receptor-like (OX1) immunoreactivity within the vestibular complex and cerebellum, and the location of hypothalamic OX-A neurons sending axonal projections to these regions in the Wistar rat. OX-A immunoreactive fibers and presumptive terminals were found throughout the medial (MVe) and lateral (LVe) vestibular nuclei. Light fiber labeling was also observed in the spinal and superior vestibular nuclei. Within the cerebellum, dense fiber and presumptive terminal labeling was observed in the medial cerebellar nucleus (Med; fastigial nucleus), with less dense labeling in the interposed (Int) and lateral cerebellar nuclei (Lat; dentate nucleus). A few scattered OX-A immunoreactive fibers were also observed throughout the cortex of the paraflocculus. OX1-like immunoreactivity was found densely concentrated within LVe, moderate in MVe, and scattered within the spinal and superior vestibular nuclei. Within the cerebellum, OX1-like immunoreactivity was also observed densely within Med and in the dorsolateral aspects of Int. Additionally, OX1 like-labeling was found in Lat, and within the granular layer of the caudal paraflocculus cerebellar cortex. Fluorogold (FG) microinjected into these vestibular and cerebellar regions resulted in retrogradely labeled neurons throughout the ipsilateral hypothalamus. Retrogradely labeled neurons containing OX-A like immunoreactivity were observed dorsal and caudal to the anterior hypothalamic nucleus and extending laterally into the lateral hypothalamic area, with the largest number clustered around the dorsal aspects of the fornix in the perifornical area. A few FG OX-A like-immunoreactive neurons were also observed scattered throughout the dorsomedial, and posterior hypothalamic nuclei. These data indicate that axons from OX-A neurons terminate within the vestibular complex and deep cerebellar nuclei of the cerebellum and although the function of these pathways is unknown, they likely represent pathways by which hypothalamic OX-A containing neurons co-ordinate vestibulo-cerebellar motor and autonomic functions associated with ingestive behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call