Abstract

Reproductive function is suppressed by several types of stress. Hypothalamic kisspeptin, which is a product of the Kiss1 gene, and GnIH/RFRP have pivotal roles in the regulation of GnRH and gonadotropins through their receptors Kiss1r and GPR147 in many species. However, alterations of these factors under stress conditions have not been fully evaluated. This study investigated the mechanisms of immune stress-induced reproductive dysfunction, especially focusing on the changes of Kiss1 and RFRP gene expression. Serum LH levels and hypothalamic Kiss1 and GnRH mRNA levels were decreased, while hypothalamic RFRP and GPR147 mRNA levels were increased by administration of a high dose of LPS (5mg/kg) in both ovariectomized and gonadal intact female rats. In this condition, Kiss1 and/or RFRP mRNA levels were positively and negatively correlated with GnRH expression, respectively. In contrast, hypothalamic Kiss1, RFRP, and GPR147 mRNA levels were not changed by administration of a moderate dose of LPS (500μg/kg) in ovariectomized rats. Rats with high-dose LPS injection showed more prolonged fever responses and severe anorexia compared with rats with moderate-dose LPS injection, indicating that more energy was used for the immune response in the former. These results suggest that the underlying mechanisms of dysfunction of gonadotropin secretion are changed according to the severity of immune stress, and that changes of some reserved factors, such as kisspeptin and RFRP, begin to participate in the suppression of GnRH and gonadotropin in severe conditions. As reproduction needs a large amount of energy, dysfunction of gonadotropin secretion under immune stress may be a biophylatic mechanism by which more energy is saved for the immune response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.