Abstract

Obesity and its associated metabolic and cardiovascular disorders are among the most challenging health problems confronting developed countries. Not only is obesity remarkably common, affecting more than one-third of U.S. adults, and very challenging to treat, but it is also tightly linked to type 2 diabetes and related metabolic disorders. A major obstacle to effective obesity treatment is that lost weight tends to be regained over time (1). Although the mechanisms underlying recovery of lost weight are incompletely understood, a large literature suggests that body fat stores are subject to homeostatic regulation, and that this process occurs in obese as well as normal-weight individuals. From this perspective, obesity can be viewed as a disorder in which the biologically defended level of body fat mass is increased. Recent findings implicate inflammation in key hypothalamic areas for body weight control in this process. In this review, we present an overview of energy homeostasis—the biological process that underlies the control of body fat mass—and describe evidence that defects in this regulatory system contribute to obesity pathogenesis. We then address molecular characteristics of hypothalamic inflammation and their implications for obesity pathogenesis (detailed more extensively in refs. 2,3), followed by evidence linking high-fat diet (HFD) feeding to neuropathological alteration of key hypothalamic areas controlling energy balance. We conclude by considering how cell-cell interactions may contribute to this deleterious hypothalamic response and the implications of these interactions for obesity pathogenesis. ### Homeostatic response to weight loss. Following a period of caloric restriction, lost weight is gradually but inexorably recovered in most individuals. This effect involves the capacity of the brain to sense the reduction of body energy stores and activate responses to compensate for this deficit. In simple terms, voluntary weight loss triggers increases of both appetite and energy efficiency, such that both sides of the energy balance equation shift …

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.