Abstract

The age-associated decline in growth hormone (GH) secretion may be a consequence of the reduction in the number of GH-releasing hormone (GHRH) positive neurones. However, it remains unclear whether an alteration in the number or distribution of somatostatin (SST) neurones contributes to this change. In the present study, we characterised the role of SST in modulating the change in pulsatile GH secretion in male C57Bl/6J mice throughout puberty and into early adulthood. We assessed pulsatile GH secretion in mice at 4, 8 and 16weeks of age. These ages correspond to early pubertal, early adulthood and adulthood, respectively. We show an elevation in peak, total and pulsatile GH secretion coinciding with periods of rapid linear growth. Using in situ hybridisation and morphometric methods, we mapped the distribution of Sst mRNA expression within the mouse brain relative to this change in pulsatile GH secretion. The results obtained show that altered pulsatile GH secretion in male mice from 4-16weeks of age does not coincide with a significant change in the number of Sst mRNA expressing neurones or an abundance of Sst mRNA expression throughout the arcuate nucleus (ARC) and periventricular nucleus (PeV). Rather, we observed a progressive decline in Sst mRNA expressing neurones within subnuclei of the paraventricular nucleus at this time. We conclude that structural changes in Sst expression within the PeV and ARC may not reflect the observed decline in pulsatile GH secretion in mice from puberty into early adulthood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.