Abstract

Preference for umami taste materials, such as monosodium L-glutamate (MSG) and the 5'-ribonucleotides, inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP), varies as a consequence of protein nutrition. Rats fed diets deficient in dietary protein or an essential L-amino acid (AA), L-lysine (Lys), avidly consumed Lys, glycine and NaCl but not umami substances. However, when the rats' protein nutrition was normal or when they were recovering from deficiency, a preference for umami substances was evident. These data suggest that the central mechanism for recognition of protein malnutrition may be coupled with umami taste preference. To test this, Lys-deficient and normal rats were employed as a model for taste preference changes. AA levels in plasma and brain remain essentially unchanged throughout the day while the rat is on standard chow but are altered during Lys deficiency. The recognition site for the deficit in the rats' brains was localized to the ventromedial (VMH) and lateral (LHA) hypothalamus as determined by functional magnetic resonance imaging (fMRI, 4.7 Telsa). Studies of single neuron activity in the LHA of Lys-deficient rats suggested that neuronal plasticity occurred. Following Lys deficiency, cells responded specifically to Lys, both iontophoretically applied and during ingestion of AA. Other LHA neurons of nondeficient rats differentially responded to MSG. The present results suggest that the LHA and probably the VMH play important roles in recognition of deficient nutrients. Neural plasticity of hypothalamic cells helps maintain AA homeostasis. Furthermore, a preference for umami substances may be an indicator that the organism (rat or human) is free of protein malnutrition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call